Matrices part 1

Ver el tema anterior Ver el tema siguiente Ir abajo

Matrices part 1

Mensaje  Darkness el Jue Feb 25, 2010 5:43 pm

INTRODUCCIÓN

Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc...
La utilización de matrices (arrays) constituye actualmente una parte esencial dn los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos,...













Matriz
Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Las matrices se utilizan para describir sistemas de ecuaciones lineales, realizar un seguimiento de los coeficientes de una aplicación lineal y registrar los datos que dependen de varios parámetros. Las matrices se describen en el campo de la teoría de matrices. Pueden sumarse, multiplicarse y descomponerse de varias formas, lo que también las hace un concepto clave en el campo del álgebra lineal.

Importancia y Utilidad
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones en el campo de la física.

Producto por un escalar
Dada una matriz A y un escalar c, su producto cA se calcula multiplicando el escalar por cada elemento de A (i.e. (cA)[i, j] = cA[i, j] ).
Ejemplo


Producto de matrices
El producto de dos matrices se puede definir sólo si el número de columnas de la matriz izquierda es el mismo que el número de filas de la matriz derecha. Si A es una matriz m×n y B es una matriz n×p, entonces su producto matricial AB es la matriz m×p (m filas, p columnas) dada por:

Para cada par i y j.

Por ejemplo:


Matriz Inversa o Invertible
Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que
AB = BA = I
Siendo I la matriz identidad. Denominamos a la matriz B la inversa de A y la denotamos por A-1.
Ejemplo:



Puesto que AB = BA = I, A y B son invertibles, siendo cada una la inversa de la otra.
Método de Gauss
Sea A = (ai j) una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A-1, seguiremos los siguientes pasos:
Paso1. Construir la matriz n ð 2n M = (A I) esto es, A está en la mitad izquierda de M y la matriz identidad I en la derecha.
Paso 2. Se deja tal y como está la primera fila de M, y debajo del primer término de la diagonal principal, a11, que llamaremos pivote, ponemos ceros. Luego se opera como se indica en el siguiente ejemplo.
Ejemplo:

Darkness

Mensajes : 99
Fecha de inscripción : 14/10/2009

Ver perfil de usuario

Volver arriba Ir abajo

Ver el tema anterior Ver el tema siguiente Volver arriba

- Temas similares

 
Permisos de este foro:
No puedes responder a temas en este foro.